General Types and Suitability of Models

Accuracy/Usefulness of Models

- Necessarily abstract from reality: a tradeoff between realism and tractability
- Precision does not mean accuracy
- Experience of building a model (i.e., mathematically formalizing causality in a system) can provide new and useful insights
- Most useful for comparing scenarios
- Results won't be "right" but can be useful

Model Sophistication

- Single driver vs multiple driver models
 - Single driver as a proxy
 - Independence of drivers
- Static vs dynamic (i.e., simulation) models
 - Single & multiple period causal links
 - Prescriptive vs. non-prescriptive models
- Single aspect vs multiple aspect models
 - Linked modeling frameworks
 - Fully integrated models
- Partial vs full system models

Multiple Aspect System Models

Advantages

- Analyses of scenarios affecting water supply reliability
 "automatically" generate economic impacts, for example
- Both local and system wide impacts can be evaluated
- Both synergistic and mutually conflicting interactions between options can be captured

Disadvantages

- Data needs are very high
- Conforming data to use with other models is problematic
- Iterating between models not dynamically linked can be difficult and time consuming

Regional Modeling Feasibility

- Availability of data
 - Time series water supply data
 - Water year type water supply data
 - Time series water use data
 - Reliability benefits
 - Cost of water management options
- Availability of water management models
 - Reservoir operations
 - Groundwater management

Update 2003 Modeling Framework Straw Proposal

Principles

- Best available forecasting tools supported by the available data
- Modeling approach for the same study area similar to that used for the CALFED Water Management Strategy Program
- Coordination with CALFED and other planning processes
 - Consistency of assumptions
 - Coordination of efforts
 - Increased stakeholder involvement

Modeling Tools

Institute for Water Resources Municipal and Industrial Needs Model (IWR-MAIN)

Model Input

- Population data
- Per capita use
- Housing characteristics
- Employment
- Economic data (income, water price, water cost)
- Weather
- Cost, efficiency, saturation, and intensity by end use for conservation programs

Model Output

- Water use forecast
- Water use reduction due to conservation programs
- Comparison of avoided water cost to cost of conservation programs

California Agricultural Model (CALAG)

Model Input

- Cost and availability of water by source and region
- Yields, water use, and costs of production by crop and region
- Irrigation efficiency cost function parameters
- Land suitability by region
- Crop market demand

Model Output

- Water use by region
- Crop pattern by region
- Farm income by region

California Simulation Model (CALSIM II)

Model Input

- Capacity of physical infrastructure
- Surface and groundwater inflow hydrology
- Parameterization of groundwater hydrogeology
- Agricultural and urban demands
- Efficiencies, losses, return flows
- Regulatory and legal constraints
- Contractual demands
- Environmental demands
- Reservoir operating rules
- Water allocation priorities

Model Output

Monthly time series of flows and storages at specific locations:

- Reservoir levels
- Stream and channel flows
- SWP deliveries
- CVP deliveries
- Non-project deliveries
- Refuge Deliveries
- Delta Outflow
- Delta Export
- Groundwater Pumping

Least-Cost Planning Simulation Model (LCPSIM)

Model Input

- Regional annual supply sequence by source
- Regional annual demand sequence
- Local carryover storage capacity and use priority
- Shortage loss function (WTP to avoid shortages)
- Cost of local water management options, including transfers

Model Output

- Least-cost use of local options
 - At desired level of reliability (cost effective solution)
 - At economically efficient use of local options (overall least-cost)
- Overall expected costs and losses of reliability management
- Benefits of imported supplies

Modeling Framework 56 Planning Areas

Update 2001 Planning Areas Modeling Strategies Statewide **IWR-MAIN** CALAG Local agency studies **Update 2001 Planning Areas Modeling Strategies** Areas instrumental to CALSIM land use based hydrology CALSIM hydrology modeling **IWR-MAIN** CALAG

Update 2001 Planning Areas Modeling Strategies Agencies for which CALSIM deliveries are instrumental CALSIM operations modeling **IWR-MAIN CALAG** Local agency studies

Update 2001 Planning Areas Modeling Strategies Major urban areas for which CALSIM deliveries are instrumental CALSIM operations modeling **IWR-MAIN LCPSIM** Local agency studies

CWPU & CALVIN

- Role of CALVIN in the California Water Plan Update 2003
 - Discussion of model capabilities (inputs and outputs)
 - Discussion of current CALVIN modeling work
 - CALFED report
 - California Energy Commission climate change research
 - Consider using results of existing CALVIN studies as reconnaissance level information for creating study plans
- Work needed to use CALVIN for future California Water Plan Updates
 - Address hydrologic and demand data problems
 - Reconcile data and hydrology with other modeling tools
 - Develop data management system
 - Train staff in model use

Data Flow for the CALVIN Model

CALVI N's Demand Coverage

